منابع مشابه
Hate Me, Hate Me Not: Hate Speech Detection on Facebook
While favouring communications and easing information sharing, Social Network Sites are also used to launch harmful campaigns against specific groups and individuals. Cyberbullism, incitement to self-harm practices, sexual predation are just some of the severe effects of massive online offensives. Moreover, attacks can be carried out against groups of victims and can degenerate in physical viol...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولHate speech, volition, and neurology
In ‘A Hypothetical Neurological Association between Dehumanization and Human RightsAbuse’,1 GailMurrowandRichardMurrowposit a biological explanationof how hate speech can spur violence, not only among individuals but, even, on a societal scale. They elaborate historical examples, cite to neuronal studies on patterns of responses in observation of pain and suffering to explain the dehumanization...
متن کاملChallenges in discriminating profanity from hate speech
In this study we approach the problem of distinguishing general profanity from hate speech in social media, something which has not been widely considered. Using a new dataset annotated specifically for this task, we employ supervised classification along with a set of features that includes n-grams, skip-grams and clustering-based word representations. We apply approaches based on single class...
متن کاملDetecting Hate Speech in Social Media
In this paper we examine methods to detect hate speech in social media, while distinguishing this from general profanity. We aim to establish lexical baselines for this task by applying supervised classification methods using a recently released dataset annotated for this purpose. As features, our system uses character n-grams, word n-grams and word skip-grams. We obtain results of 78% accuracy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Language Literacy: Journal of Linguistics, Literature, and Language Teaching
سال: 2019
ISSN: 2580-9962,2580-8672
DOI: 10.30743/ll.v3i1.1998